
Tutorial 11: Taylor polynomials, Topology MAT157Y5 2021-2022

Let f : I → R be Cn, and a ∈ I. We define the n-th order Taylor polynomial of f at a as the
polynomial

pfn,a(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k.

If the context is clear, we may write pn,a(x) instead of pfn,a(x). We also defined the “remainder” rfn,a(x) (or
rn,a(x)) of the Taylor polynomial, which is the difference between f and its n-th order Taylor polynomial
approximation at a:

rfn,a(x) = f(x)− pfn,a(x).

We have proven a few facts about polynoimal approximations in class:

(i) pn,a(x) is a good n-th order approximation of f at a. That is,

lim
x→a

rn,a(x)

(x− a)n

(
= lim

x→a

f(x)− pn,a(x)

(x− a)n

)
= 0.

In fact, it is the only n-th order polynomial that is a good n-th order approximation of f at a.

(ii) (rn,a)(k)(a) = 0 for k = 0, 1, . . . , n. As rn,a(x) = f(x)− pn,a(x), this can also be written

(pn,a)(k)(a) = f (k)(a).

(iii) If f is also Cn+1, then for x > a, there exists some c ∈ (a, x) such that

rn,a(x) =
f (n+1)(c)

(n + 1)!
(x− a)n+1.

For x < a, there exists some c ∈ (x, a) such that the above equation holds.

Problem 1
Suppose p is a good n-th order approximation of f at a:

lim
x→a

f(x)− p(x)

(x− a)n
= 0.

Show that p is a good k-th order approximation of f at a for all k = 0, 1, . . . , n− 1 as well.

Try to do the following problem with as little aid from calculators as possible. You may find the following
calculations useful:

22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128, 28 = 256, 29 = 512, 210 = 1024.

32 = 9, 33 = 27, 34 = 81, 35 = 243, 36 = 729, 37 = 2187, 38 = 6561.

2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, 7! = 5040, 8! = 40320.

Problem 2
1. Find the n-th order Taylor polynomial approximation of cos at a = 0.

2. Using fact (iii), find a large enough n so that the nth-order Taylor polynomial of cos at a = 0
approximates cos(1) with an error of less than 10−3. That is, find an n so that

|rn,a(1)| ≤ 10−3.

3. Calculate cos(1) correct to 3 decimal places.
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Let x ∈ R. We defined the open ball of radius r around x, Br(x), as the set (x− r, x + r). Given a
set U ⊆ R, and a point a ∈ R, we say:

• a is an interior point of U if there exists r > 0 so that Br(a) ⊆ U .

• a is a boundary point of U if for every r > 0, we have Br(b) ∩ U 6= ∅ and Br(b) ∩ U c 6= ∅.

The set of interior points of U is denoted U int, and the set of boundary points of U is denoted ∂U .

Problem 3
Find examples of sets U ⊆ R which:

1. Have no interior points, but have boundary points.

2. Have no boundary points.

3. Have countably infinitely many boundary points.

4. Have uncountably infinitely many boundary points, and countably infinitely many interior points.

Problem 4
Can a set U ⊆ R have finitely many interior points?

We say a set U ⊆ R is:

• Open if U int = U .

• Closed if ∂U ⊆ U .

Problem 5
Find examples of sets U ⊆ R which:

1. Are open and closed.

2. Are open but not closed.

3. Are closed but not open.

4. Are neither open nor closed.

Problem 6
Show that U ⊆ R is open if and only if U c is closed.

Recall we have proven the following in class:

• If {Ui}i∈I is an arbitrary collection of open sets, then
⋃
i∈I

Ui is also open.

• If U1, U2, . . . , Un is a finite collection of open sets, then

n⋂
i=1

Ui is also open.

Problem 7
Find an infinite collection of open sets whose intersection is not open.
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Problem 8

1. If {Ci}i∈I is an arbitrary collection of closed sets, show that
⋂
i∈I

Ci is also closed.

2. If C1, C2, . . . , Cn is a finite collection of closed sets, show that

n⋃
i=1

Ci is also closed.

3. Show that finiteness is necessary in 2. In other words, find an infinite collection of closed sets
whose union is not closed.

3


