Let $f : I \to \mathbb{R}$ be C^n , and $a \in I$. We define the *n*-th order Taylor polynomial of f at a as the polynomial

$$p_{n,a}^{f}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}.$$

If the context is clear, we may write $p_{n,a}(x)$ instead of $p_{n,a}^f(x)$. We also defined the "remainder" $r_{n,a}^f(x)$ (or $r_{n,a}(x)$) of the Taylor polynomial, which is the difference between f and its n-th order Taylor polynomial approximation at a:

$$r_{n,a}^{f}(x) = f(x) - p_{n,a}^{f}(x).$$

We have proven a few facts about polynoimal approximations in class:

(i) $p_{n,a}(x)$ is a good n-th order approximation of f at a. That is,

$$\lim_{x \to a} \frac{r_{n,a}(x)}{(x-a)^n} \left(= \lim_{x \to a} \frac{f(x) - p_{n,a}(x)}{(x-a)^n} \right) = 0.$$

In fact, it is the only n-th order polynomial that is a good n-th order approximation of f at a.

(ii) $(r_{n,a})^{(k)}(a) = 0$ for k = 0, 1, ..., n. As $r_{n,a}(x) = f(x) - p_{n,a}(x)$, this can also be written

$$(p_{n,a})^{(k)}(a) = f^{(k)}(a).$$

(iii) If f is also C^{n+1} , then for x > a, there exists some $c \in (a, x)$ such that

$$r_{n,a}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}.$$

For x < a, there exists some $c \in (x, a)$ such that the above equation holds.

Problem 1

Suppose p is a good n-th order approximation of f at a:

$$\lim_{x \to a} \frac{f(x) - p(x)}{(x - a)^n} = 0.$$

Show that p is a good k-th order approximation of f at a for all k = 0, 1, ..., n-1 as well.

Try to do the following problem with as little aid from calculators as possible. You may find the following calculations useful:

$$2^{2} = 4, 2^{3} = 8, 2^{4} = 16, 2^{5} = 32, 2^{6} = 64, 2^{7} = 128, 2^{8} = 256, 2^{9} = 512, 2^{10} = 1024.$$

$$3^{2} = 9, 3^{3} = 27, 3^{4} = 81, 3^{5} = 243, 3^{6} = 729, 3^{7} = 2187, 3^{8} = 6561.$$

$$2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, 7! = 5040, 8! = 40320.$$

Problem 2

1. Find the *n*-th order Taylor polynomial approximation of $\cos at a = 0$.

2. Using fact (iii), find a large enough n so that the nth-order Taylor polynomial of cos at a = 0 approximates cos(1) with an error of less than 10^{-3} . That is, find an n so that

$$|r_{n,a}(1)| \le 10^{-3}.$$

3. Calculate $\cos(1)$ correct to 3 decimal places.

Let $x \in \mathbb{R}$. We defined the **open ball of radius** r **around** x, $B_r(x)$, as the set (x - r, x + r). Given a set $U \subseteq \mathbb{R}$, and a point $a \in \mathbb{R}$, we say:

- a is an interior point of U if there exists r > 0 so that $B_r(a) \subseteq U$.
- *a* is a **boundary point** of *U* if for every r > 0, we have $B_r(b) \cap U \neq \emptyset$ and $B_r(b) \cap U^c \neq \emptyset$.

The set of interior points of U is denoted U^{int} , and the set of boundary points of U is denoted ∂U .

Problem 3

Find examples of sets $U \subseteq \mathbb{R}$ which:

- 1. Have no interior points, but have boundary points.
- 2. Have no boundary points.
- 3. Have countably infinitely many boundary points.
- 4. Have uncountably infinitely many boundary points, and countably infinitely many interior points.

Problem 4

Can a set $U \subseteq \mathbb{R}$ have finitely many interior points?

We say a set $U \subseteq \mathbb{R}$ is:

- **Open** if $U^{\text{int}} = U$.
- Closed if $\partial U \subseteq U$.

Problem 5

Find examples of sets $U \subseteq \mathbb{R}$ which:

- 1. Are open and closed.
- 2. Are open but not closed.
- 3. Are closed but not open.
- 4. Are neither open nor closed.

Problem 6

Show that $U \subseteq \mathbb{R}$ is open if and only if U^c is closed.

Recall we have proven the following in class:

• If $\{U_i\}_{i \in I}$ is an arbitrary collection of open sets, then $\bigcup U_i$ is also open.

• If U_1, U_2, \ldots, U_n is a *finite* collection of open sets, then $\bigcap_{i=1}^n U_i$ is also open.

Problem 7

Find an infinite collection of open sets whose intersection is not open.

Problem 8

- 1. If $\{C_i\}_{i \in I}$ is an arbitrary collection of closed sets, show that $\bigcap_{i \in I} C_i$ is also closed.
- 2. If C_1, C_2, \ldots, C_n is a *finite* collection of closed sets, show that $\bigcup_{i=1}^n C_i$ is also closed.
- 3. Show that finiteness is necessary in 2. In other words, find an infinite collection of closed sets whose union is not closed.